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Abstract. Given a unicyclic graph G, we obtain the Gallai-Edmonds decomposition
of G using linear algebra tools. More precisely, the Gallai-Edmonds decomposition of
G is computed from the null space associated with adjacency matrices of its subtrees.

1. Introduction

The aim of spectral graph theory is to obtain structural properties of a graph using the
eigenvalues and eigenvectors of the matrices associated with the graph. In particular,
relating classical parameters with spectral parameters is quite useful and this is the
general goal of this paper. Here, we use the null space of a unicyclic graph G, which is
the null space of its adjacency matrix, to compute the Gallai-Edmonds decomposition of
G. More precisely, we obtain the Gallai-Edmonds decomposition (see definition below)
of unicyclic graphs from the null decomposition of its subtrees.
Null decomposition of a graph (see definition in Section 2), is defined from subsets

of vertices of a graph that satisfy certain properties related to the null space. We
remark that the null decomposition provides information on structure of a graph, as
for example, matching and independence number [2, 11].
In order to explain our results, we need a few definitions here. For an undirected

graph G = (V,E), a matching M in G is a set of pairwise non-adjacent edges. A
maximum matching is a matching of largest cardinality in G and the matching number
of G, denoted by ν(G), is the size of a set of any maximum matching. M(G) denotes
the set of all maximum matchings of G. A vertex is saturated by M , if it is an endpoint
of one of the edges in the matching M . Otherwise the vertex is said non-saturated. The
neighborhood of a vertex v ∈ V in G is defined to be N(v) = {u ∈ V : {u, v} ∈ E}.
The Gallai-Edmonds decomposition of G [7, 10] is a partition of V into three sets with
certain properties related to maximum matchings of G. More precisely, V is partitioned
into three sets EG(G), R(G) and S(G) where:

• EG(G) = {v ∈ V : ∃M ∈ M(G) such that M does not sature v}.
• R(G) = N(EG(G))−EG(G), where N(EG(G)) =

⋃

v∈EG(G)

N(v).

• S(G) = V − (EG(G) ∪ R(G)).

For example, consider G the unicyclic graph of Figure 1. We use zig zag edges to
represent the edges of a matching. Notice that G has four maximum matchings
{{a, b}, {c, d}, {f, e}, {h, i}}, {{a, b}, {c, d}, {g, e}, {h, i}}, {{a, b}, {c, i}, {f, e}, {h, d}}
and {{a, b}, {c, i}, {g, e}, {h, d}}. Thus, the Gallai-Edmonds decomposition of G is
given by EG(G) = {f, g}, R(G) = {e} and S(G) = {a, b, c, d, i, h}.
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Figure 1. Gallai-Edmonds decomposition of the unicyclic graph G.

Gallai-Edmonds decomposition was independently introduced by Gallai [9, 10] and
Edmonds [7]. This classical decomposition has several applications [6, 13] and it has
been studied by many mathematicians [1, 4, 5, 6, 8, 14, 17] over the years. It is very
important in matching theory, given the amount of properties that provides about
matchings of any graph, as for example, the well-known result is the Gallai-Edmonds
structure theorem ([15], Chapter 3), it states that:

• The subgraph induced by S(G) has a perfect matching.
• ν(G) = 1

2
(|V | − c(EG(G)) + |R(G)|), where c(EG(G)) denotes the number of

components of the graph induced by EG(G).

Cymer [6] shows that the Gallai-Edmonds decomposition can be applied to the prun-
ing methods of constraint programming. The authors of [16, 18] used, respectively, the
notions of path-matching and matching cover to obtain more general versions of the
Gallai-Edmonds structure theorem for graphs and hypergraphs. For any graph, the
Gallai-Edmonds decomposition can be obtained in polynomial time via the Edmonds
Matching Algorithm (see [15], Chapters 3 and 9).
One if the goals of this paper is to obtain the Gallai-Edmonds decomposition of a

unicyclic graph G using a partition of the vertices based on the null space of its subtrees.
Our main contribution is to show how to use linear algebra to obtain such an important
decomposition.
The outline of the paper is as follows. In Section 2, we recall some basic definitions

and preliminary results. In Sections 3 and 4, we obtain our main results. More pre-
cisely, we give a relationship between the Gallai-Edmonds decomposition of a unicyclic
graph and the null decomposition of its subtrees. This relationship gives a nice way to
compute the Gallai-Edmonds decomposition of unicyclic graphs from the null space of
its subtrees, that is, from linear algebra.

2. Basic definitions and preliminary results

The support of a graph G is given by

Supp(G) = {v ∈ V (G) : ∃x ∈ N (G) such that xv 6= 0}.

Where N (G) denotes the null space of G, that is, the null space of its adjacency matrix.
Support gives important information about structure of trees. The next two lemmas
show the relationship between the support of trees and their independent sets and
matchings.

Lemma 2.1. [11] Let T be a tree, then Supp(T ) is an independent set of T .

Lemma 2.2. [2] Let T be a tree, then EG(T ) = Supp(T ).

The core of G, denoted by Core(G), is defined:

Core(G) =
⋃

v∈Supp(G)

N(v).
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The set of N -vertices of G, denoted by V (GN(G)), is given by:

V (GN (G)) = V (G)− (Supp(G) ∪ Core(G)).

For a tree T , we have that Core(T ) = R(T ) and V (GN (T )) = S(T ), see [2, 11]. Null
decomposition of G is a pair of induced subgraphs of G. The first subgraph is induced
by Supp(G) and Core(G) and the second one is induced by V (GN(G)). Lemma 2.3
gives a nice way to compute the independence and matching numbers of trees using its
null decompositions.

Lemma 2.3. [11] Let T be a tree. Then

ν(T ) = |Core(T )|+
|V (GN(T ))|

2

α(T ) = |Supp(T )|+
|V (GN(T ))|

2
.

Let G be a unicyclic graph and let C be the unique cycle of G. For each vertex
v ∈ V (C), we denote by G{v} the induced connected subgraph of G with maximum
number of vertices, which contains the vertex v and no other vertex of C. G{v} is
called the pendant tree of G at v (see Figure 3). The unicyclic graph G is said to be
of Type I if there exists at least one pendant tree G{v} such that v /∈ Supp(G{v}),
otherwise, G is said to be of Type II (for more details see [2]). Notice that the set of
unicyclic graphs can be divided into two classes, the set of unicyclic graphs of Type I
and the set of unicyclic graphs of Type II.
Lemmas 2.4 and 2.5 give a nice way to compute the matching number of unicyclic

graphs using the null decomposition of its subtrees.

Lemma 2.4. [2] If G is a unicyclic graph of Type I and G{v} a pendant tree such that
v /∈ Supp(G{v}), then

ν(G) = |Core(G{v})|+|Core(G−G{v})|+
|V (GN (G{v}))|+ |V (GN(G−G{v}))|

2
= ν(G{v}) + ν(G−G{v}).

Lemma 2.5. [2] Let G be a unicyclic graph and C its cycle. Let G−C =
k
⋃

i=1

Ti, where

Ti is a connected component of G− C. If G is a unicyclic graph of Type II, then

ν(G) =

⌊

|V (C)|

2

⌋

+

k
∑

i=1

|Core(Ti)|+
|V (GN (Ti))|

2

= ν(C) +
k
∑

i=1

ν(Ti).

In the next sections we will study the Gallai-Edmonds decomposition of unicyclic
graphs of Type I and II, respectively.

3. Gallai-Edmonds Decomposition of Unicyclic Graphs of Type I

In this section, we obtain a relationship between the Gallai-Edmonds decomposition
of a unicyclic graph G of Type I and the null decompositions of G{v} and G−G{v},
where v /∈ Supp(G{v}).
The next technical lemmas and remarks will be used to prove our main result in this

section (Theorem 3.9).
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Remark 3.1. Let G be a unicyclic graph and G{v} a pendant tree. Let u, w ∈
N(v) ∩ V (G−G{v}). Notice that E(G{v}), E(G − G{v}) and {{u, v}, {w, v}} form
a partition of E(G), thus, E(G) = E(G{v})∪E(G−G{v})∪ {{u, v}, {w, v}}. Hence,
given M a matching in G we have that

M = (M ∩ E(G{v})) ∪ (M ∩ E(G−G{v})) ∪ (M ∩ {{u, v}, {w, v}}) .

Remark 3.2. Note that for all graph G and v ∈ V (G) we have that

ν(G)− 1 ≤ ν(G− v) ≤ ν(G).

Lemma 3.3. Let T be a tree and v ∈ V (T ). v ∈ Supp(T ) if, and only if, ν(T − v) =
ν(T ).

Proof. Suppose that v ∈ Supp(T ), then by Lemma 2.2 there is M ∈ M(T ) such that
M does not saturate v. Thus, M is a matching in T −v. Then ν(T ) = |M | ≤ ν(T − v).
Given M ∈ M(T − v). Note that M is a matching in T , because T − v ⊆ T . Thus,
ν(T − v) = |M | ≤ ν(T ). Therefore, ν(T ) = ν(T − v).
Conversely, suppose that ν(T ) = ν(T − v). Given M ∈ M(T − v). Notice that

M is a matching in T , because T − v ⊆ T . Since ν(T ) = ν(T − v), we have that
M ∈ M(T ). Moreover, M does not saturate v. Hence, by Lemma 2.2 we conclude that
v ∈ Supp(T ). �

Lemma 3.4. Let G be a unicyclic graph Type I and G{v} a pendant tree such that
v /∈ Supp(G{v}). If M ∈ M(G), then M ∩ E(G−G{v}) ∈ M(G−G{v}).

Proof. Suppose there is M ∈ M(G) such that M ∩ E(G−G{v}) /∈ M(G − G{v}).
Thus, we have that

|M ∩ E(G−G{v})| ≤ ν(G−G{v})− 1.

Let u, w ∈ N(v) ∩ V (G−G{v}).
Case 1: {u, v} /∈ M and {w, v} /∈ M
Since |M ∩ E(G−G{v})| ≤ ν(G−G{v})− 1, we have that

ν(G) = |M |

= |M ∩ E(G{v})|+ |M ∩ E(G−G{v})|

≤ ν(G{v}) + ν(G−G{v})− 1

< ν(G{v}) + ν(G−G{v}).

Which is a contradiction, because by Lemma 2.4 we have that ν(G) = ν(G{v})+ν(G−
G{v}).
Case 2: {u, v} ∈ M or {w, v} ∈ M
Note that in this case M ∩ E(G{v}) does not saturate v, because v is saturate by
{u, v} or by {w, v}. Since v /∈ Supp(G{v}), then by Lemma 2.2 we conclude that
M ∩ E(G{v}) /∈ M(G{v}). Thus, |M ∩ E(G{v})| ≤ ν(G{v})− 1.
Hence,
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ν(G) = |M |

= |M ∩ E(G{v})|+ |M ∩ E(G−G{v})|+ |M ∩ {{u, v}, {w, v}}|

= |M ∩ E(G{v})|+ |M ∩ E(G−G{v})|+ 1

≤ ν(G{v})− 1 + ν(G−G{v})− 1 + 1

≤ ν(G{v}) + ν(G−G{v})− 1

< ν(G{v}) + ν(G−G{v}).

Which is a contradiction, because by Lemma 2.4 we have that ν(G) = ν(G{v})+ν(G−
G{v}). �

Lemma 3.5. Let G be a unicyclic graph Type I and G{v} a pendant tree such that
v /∈ Supp(G{v}). Let u, w ∈ N(v) ∩ V (G−G{v}) and M ∈ M(G). If {u, v} /∈ M and
{w, v} /∈ M , then M∩E(G{v}) ∈ M(G{v}), otherwise, M∩E(G{v}) ∈ M(G{v}−v).

Proof. Case 1: {u, v} /∈ M and {w, v} /∈ M
Using Remark 3.1 and Lemma 2.4, we have that

ν(G{v}) + ν(G−G{v}) = ν(G) = |M | = |M ∩ E(G{v})|+ |M ∩ E(G−G{v})|.

Since, by Lemma 3.4,

|M ∩ E(G−G{v})| = ν(G−G{v}),

we have that
ν(G{v}) = |M ∩ E(G{v})|.

Hence, M ∩ E(G{v}) ∈ M(G{v}).

Case 2: {w, v} ∈ M or {u, v} ∈ M
Note that {w, v} and {u, v} can not belong simultaneously to M , because both are
incident in v. Moreover, M ∩ E(G{v}) does not sature v, because {w, v} or {u, v} is
incident in v. Thus, M ∩ E(G{v}) is a matching in G{v} − v. Using Remark 3.1 and
Lemma 2.4 we have that

ν(G{v}) + ν(G−G{v}) = ν(G) = |M | = |M ∩ E(G{v})|+ |M ∩ E(G−G{v})|+ 1.

Since, by Lemma 3.4,

|M ∩ E(G−G{v})| = ν(G−G{v}),

we have that

|M ∩ E(G{v})| = ν(G{v})− 1.

Therefore, using Lemma 3.3 and Remark 3.2 we conclude thatM∩E(G{v}) ∈ M(G{v}−
v). �

Lemma 3.6. Let G be a unicyclic graph Type I, G{v} a pendant tree such that v /∈
Supp(G{v}), u ∈ N(v) ∩ V (G−G{v}) and M ∈ M(G). If u /∈ Supp(G−G{v}),
then {u, v} /∈ M .

Proof. Suppose there isM ∈ M(G) such that {u, v} ∈ M . Note that M∩E(G−G{v})
is matching in G − G{v}. Moreover, M ∩ E(G−G{v}) does not saturate u. Since
u /∈ Supp(G−G{v}), then by Lemma 2.2 we conclude that M ∩ E(G−G{v}) /∈
M(G − G{v}). Thus, using Lemma 3.4 we conclude that M /∈ M(G), which is a
contradiction. �
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Proposition 3.7. Let G be a unicyclic graph Type I and G{v} a pendant tree such that
v /∈ Supp(G{v}). Let u, w ∈ N(v) ∩ V (G−G{v}) such that u, w /∈ Supp(G−G{v}).
M ∈ M(G) if, and only if, M = M1 ∪M2, where M1 ∈ M(G{v}) and M2 ∈ M(G−
G{v}).

Proof. Given M ∈ M(G). Using Lemma 3.6 we conclude that {u, v} /∈ M and
{w, v} /∈ M . Moreover, using Remark 3.1 we have that M = (M ∩ E(G{v})) ∪
(M ∩ E(G−G{v})). By lemmas 3.5 and 3.4 we have that M ∩ E(G{v}) ∈ M(G{v})
and M ∩ E(G−G{v}) ∈ M(G−G{v}).
Conversely, given M = M1 ∪M2, where M1 ∈ M(G{v}) and M2 ∈ M(G− G{v}).

Thus, we have that |M | = |M1| + |M2| = ν(G{v}) + ν(G − G{v}) = ν(G). Hence,
M ∈ M(G). �

Lemma 3.8. [3] Let G be a unicyclic graph of Type I and G{v} a pendant tree such
that v /∈ Supp(G{v}). Then Supp(G{v}) ⊆ Supp(G{v} − v).

Now, we are able to present the relationship between the Gallai-Edmonds decomposi-
tion of a unicyclic graph of Type I and the null decomposition of its subtrees. Theorem
3.9 gives a way to obtain the Gallai-Edmonds decomposition of a unicyclic graph from
the null decompositions of G{v}, G−G{v} and G{v} − v, where v /∈ Supp(G{v}).

Theorem 3.9. Let G be a unicyclic graph Type I, G{v} a pendant tree such that
v /∈ Supp(G{v}) and u, w ∈ N(v) ∩ V (G−G{v}). If u, w /∈ Supp(G−G{v}), then

(i) EG(G) = Supp(G{v}) ∪ Supp(G−G{v})
(ii) R(G) = Core(G{v}) ∪ Core(G−G{v})
(iii) S(G) = V (GN(G{v})) ∪ V (GN(G−G{v}))

otherwise,

(i) EG(G) = Supp(G{v} − v) ∪ Supp(G−G{v})
(ii) R(G) = {v} ∪ Core(G{v} − v) ∪ Core(G−G{v})
(iii) S(G) = V (GN(G{v} − v)) ∪ V (GN (G−G{v}))

Proof. Case 1: u, w /∈ Supp(G−G{v})

(i) Given x ∈ EG(G). Thus, there is M ∈ M(G) such that M does not saturate
x. By Proposition 3.7 we conclude that M = M1 ∪ M2, where M1 ∈ M(G{v})
and M2 ∈ M(G−G{v}). Note that M1 and M2 do not saturate x. Therefore, if
x ∈ V (G{v}), then by Lemma 2.2 we conclude that x ∈ Supp(G{v}). Similarly,
if x ∈ V (G−G{v}), then we conclude that x ∈ Supp(G−G{v}).
Now, given x ∈ Supp(G{v}) ∪ Supp(G−G{v}). We will to obtain M ∈ M(G)

such that M does not saturate x. If x ∈ Supp(G{v}), then by Lemma 2.2 there is
M1 ∈ M(G{v}) such that M1 does not saturate x. Consider M2 ∈ M(G−G{v}).
DefineM = M1∪M2. We have that |M | = |M1|+|M2| = ν(G{v})+ν(G−G{v}) =
ν(G). Hence, M ∈ M(G) and M does not saturate x, that is, x ∈ EG(G).
Similarly, if x ∈ Supp(G−G{v}), then we define M = M1∪M2, where M2 ∈
M(G − G{v}) such that M2 does not saturate x and M1 ∈ M(G{v}). We
conclude that M ∈ M(G) and M does not saturate x, thus, x ∈ EG(G).

(ii) Notice that

V (G−G{v}) ∩N(V (G{v})) = {u, w} and V (G{v}) ∩N(V (G−G{v})) = {v}.

Since u, w /∈ Supp(G−G{v}), then N(Supp(G{v})) ∩ V (G−G{v}) = ∅ and
N(Supp(G−G{v})) ∩ V (G{v}) = ∅. Moreover, note that
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N(EG(G)) = N(Supp(G{v}) ∪ Supp(G−G{v}))

= Core(G{v}) ∪ Core(G−G{v}).

By Lemma 2.1 we have that Supp(G{v}) ∪ Supp(G−G{v}) is an independent
set, thus,

(Supp(G{v}) ∪ Supp(G−G{v})) ∩ (Core(G{v}) ∪ Core(G−G{v})) = ∅

EG(G) ∩N(EG(G)) = ∅.

Therefore, N(EG(G))−EG(G) = R(G) = Core(G{v}) ∪ Core(G−G{v}).
(iii) Just use the items (i) and (ii).

Case 2: u ∈ Supp(G−G{v}) or w ∈ Supp(G−G{v})

(i) Given x ∈ EG(G). Thus, there is M ∈ M(G) such that M does not saturate
x. Note that in this case we can have {u, v} ∈ M or {w, v} ∈ M. If {u, v} ∈ M
or {w, v} ∈ M , then by Lemma 3.5 M ∩ E(G{v}) ∈ M(G{v} − v). Moreover,
by Lemma 3.4 we have that M ∩ E(G−G{v}) ∈ M(G − G{v}). Notice that
M∩E(G{v}) andM∩E(G−G{v}) do not saturate x. Thus, if x ∈ V (G{v} − v),
then using Lemma 2.2 we conclude that x ∈ Supp(G{v} − v). Similarly, if x ∈
V (G−G{v}), then we conclude that x ∈ Supp(G−G{v}).
If {u, v} /∈ M and {w, v} /∈ M , then by same argument as in item (i) of the

Case 1 we have that x ∈ Supp(G{v})∪Supp(G−G{v}). Thus, using Lemma 3.8
we have that x ∈ Supp(G{v} − v) ∪ Supp(G−G{v}).
Now, given x ∈ Supp(G{v} − v) ∪ Supp(G−G{v}). We will to obtain M ∈

M(G) such that M does not saturate x. If x ∈ Supp(G{v} − v) and u ∈
Supp(G−G{v}), then by Lemma 2.2 there are M1 ∈ M(G{v} − v) and M2 ∈
M(G − G{v}) such that M1 and M2 do not saturate x and u, respectively.
We define M = M1∪M2∪{u, v}. We have that |M | = |M1| + |M2| + 1 =
ν(G{v} − v) + ν(G − G{v}) + 1 = ν(G{v}) + ν(G − G{v}) = ν(G). Therefore,
M ∈ M(G) andM does not saturate x. Similarly, if x ∈ Supp(G{v} − v) and w ∈
Supp(G−G{v}), then we define M = M1∪M2∪{w, v}, where M1 ∈ M(G{v}−v)
and M2 ∈ M(G− G{v}) and M1 and M2 do not saturate x and w, respectively.
Hence, M ∈ M(G) and M does not saturate x. If x ∈ Supp(G−G{v}), then we
define M = M1∪M2, where M1 ∈ M(G{v}) and M2 ∈ M(G − G{v}) and M1

does not saturate x. Therefore, M ∈ M(G) and M does not saturate x.
(ii) Note that

N(EG(G)) = N(Supp(G{v} − v) ∪ Supp(G−G{v}))

= {v} ∪ Core(G{v} − v) ∪ Core(G−G{v}).

Moreover N(EG(G)) ∩ EG(G) = ∅. Therefore, N(EG(G)) − EG(G) = R(G) =
{v} ∪ Core(G{v} − v) ∪ Core(G−G{v}).

(iii) Just use the items (i) and (ii).

�

In the following example, we use the Theorem 3.9 to obtain the Gallai-Edmonds de-
composition of the unicyclic graph G in Figure 2. Analyzing the entries of the vectors
of the basis of the N (G{v}) and N (G−G{v}) we obtain that Supp(G{v}) = {z, x, k},
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Core(G{v}) = {v}, V (GN(G{v})) = {c, y}, Supp(G−G{v}) = {e, d, i, g, h,m, n, o, p, s, t},
Core(G−G{v}) = {a, j, l, q, r} and V (GN (G−G{v})) = {u, f, w, b}.

a

b

w

v

u

f

g hi

j l

mn o p

q

r

s

t

e

d

xz k

y

c

G{v}

G −G{v}

Figure 2. Unicyclic graph of Type I and its subtrees G{v} and G−G{v}.

Note that G is a unicyclic graph of Type I, because v /∈ Supp(G{v}). Moreover, u, w /∈
Supp(G−G{v}). Therefore, by Theorem 3.9 the Gallai-Edmonds decomposition of G
is given by:

EG(G) = Supp(G{v}) ∪ Supp(G−G{v}) = {z, x, k, e, d, i, g, h,m, n, o, p, s, t},

R(G) = Core(G{v}) ∪ Core(G−G{v}) = {a, j, l, q, r, v},

S(G) = V (GN (G{v})) ∪ V (GN(G−G{v})) = {u, f, w, b, c, y}.

4. Gallai-Edmonds decomposition of Unicyclic Graphs of Type II

In this section, we obtain a relationship between the Gallai-Edmonds decomposition
of a unicyclic graph G of Type II and the null decompositions of G−C or G{v}, where
C is the unique cycle of G and v ∈ V (C).
Next, we will define the set of intermediate edges. We study under what circumstance

these edges are in a maximum matching of G (see Lemma 4.4).

Definition 4.1. Let G be a unicyclic graph and C its cycle. The set of intermediate
edges, denoted by IE(G), is defined as IE(G) = E(G)− (E(C) ∪ E(G− C)).

The following lemmas and remarks will be crucial to prove our main results in this
section (Theorems 4.6 and 4.8).

Remark 4.2. Let G be a unicyclic graph and C its cycle. Notice that E(C), E(G −
C) and IE(G) form a partition of E(G), thus, E(G) = E(C) ∪ E(G− C) ∪ IE(G).
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Therefore, given a matching M in G we have that

M = (M ∩ E(C)) ∪ (M ∩ E(G− C)) ∪ (M ∩ IE(G))

= (M ∩ E(C)) ∪
⋃

v∈V (C)

M ∩ E(G{v}).

Lemma 4.3. Let G be a unicyclic graph of Type II and C its cycle. If M ∈ M(G),
then M ∩ E(C) ∈ M(C) and M ∩ E(G{v}) ∈ M(G{v}) for all v ∈ V (C).

Proof. Suppose there is M ∈ M(G) such that M ∩E(C) /∈ M(C) or M ∩E(G{w}) /∈
M(G{w}) for some w ∈ V (C). That is, |M ∩ E(C)| ≤ ν(C)− 1 or |M ∩ E(G{w})| ≤
ν(G{w})− 1. Note that given u ∈ V (C) we have that u ∈ Supp(G{u}), then by

Lemma 3.3 ν(G{u}) = ν(G{u} − u). Consider G−C =
k
⋃

i=1

Ti, where Ti is a connected

component of G− C. Thus, we have that

ν(G) = |M |

= |M ∩ E(C)|+
∑

u∈V (C)

|M ∩ E(G{u})| (Remark 4.2)

= |M ∩ E(C)|+ |M ∩ E(G{w})|+
∑

u∈V (C)−{w}

|M ∩ E(G{u})|

≤ +ν(C) + ν(G{w})− 1 +
∑

u∈V (C)−{w}

ν(G{u})

= −1 + ν(C) +
∑

u∈V (C)

ν(G{u})

= −1 + ν(C) +
∑

u∈V (C)

ν(G{u} − u)

= −1 + ν(C) +
k
∑

i=1

ν(Ti)

< ν(C) +

k
∑

i=1

ν(Ti).

Which is a contradiction, because by Lemma 2.5 ν(G) = ν(C) +
k
∑

i=1

ν(Ti). �

Lemma 4.4. Let G be a unicyclic graph Type II, C its cycle and M ∈ M(G). Let
e ∈ IE(G). If |V (C)| is even, then e /∈ M .

Proof. Let e ∈ IE(G). Suppose there is M ∈ M(G) such that e ∈ M . Consider

G − C =
k
⋃

i=1

Ti, where Ti is a connected component of G − C. Define e = {u, v} such

that u ∈ V (Tj) for some j ∈ {1, 2, . . . , k} and v ∈ V (C). Note that M ∩ E(C) is a
matching in C. Moreover, M ∩ E(C) do not saturate v, because v is saturate by e.

As |V (C)| is even and ν(C) = |V (C)|
2

, then all maximum matchings in C are perfect
matching. Therefore, M ∩ E(C) /∈ M(C). Hence, using Lemma 4.3 we have that
M /∈ M(G), which is a contradiction. �
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Lemma 4.5. [2] Let G be a unicyclic graph and C its cycle. Let G{v} be a pendant
tree such that v ∈ Supp(G{v}). If u ∈ N(v) ∩ V (G{v}), then u /∈ Supp(G− C).

We are now ready to prove our main results in this section. Theorems 4.6 and 4.8
provide a way to obtain the Gallai-Edmonds decomposition of a unicyclic graph of Type
II from the null decompositions of G− C and G{v}, respectively.

Theorem 4.6. Let G be a unicyclic graph of Type II and C its cycle. If |V (C)| is
even, then

(i) EG(G) = Supp(G− C)
(ii) R(G) = Core(G− C)
(iii) S(G) = V (GN(G− C)) ∪ V (C)

Proof. (i) Consider G − C =
k
⋃

i=1

Ti, where Ti is a connected component of G − C.

Given x ∈ EG(G). Thus, there is M ∈ M(G) such that M does not saturate x.
Since |V (C)| is even, then using Remark 4.2 and Lemma 4.4 we conclude that

M = (M ∩ E(C)) ∪

(

k
⋃

i=1

(M ∩ E(Ti))

)

.

Note that by Lemma 4.3 we have that M ∩ E(C) ∈ M(C). Moreover, we have
that M ∩ E(Ti) ∈ M(Ti), otherwise

ν(G) = |M | < ν(C) +

k
∑

i=1

ν(Ti),

which is a contradiction by Lemma 2.5. As |V (C)| is even and ν(C) = |V (C)|
2

, then
all maximum matchings in C are perfect matching. Hence, x /∈ V (C), otherwise
would be saturated by M ∩ E(C) and consequently saturated by M . That is,
x ∈ V (Ts) for some s ∈ {1, . . . , k}. Since M ∩ E(Ts) ∈ M(Ts), then by Lemma

2.2 x ∈ Supp(Ts), that is, x ∈ Supp(G− C) =
k
⋃

i=1

Supp(Ti).

Now, given x ∈ Supp(G− C), we will obtain M ∈ M(G) such that M does not

saturate x. Consider G−C =
k
⋃

i=1

Ti, where Ti is a connected component of G−C.

Note that Supp(G − C) =
k
⋃

i=1

Supp(Ti). Thus, there is s ∈ {1, . . . , k} such that

x ∈ Supp(Ts).
Since x ∈ Supp(Ts), then by Lemma 2.2 there is Ms ∈ M(Ts) such that Ms

does not saturate x. Let Mi ∈ M(Ti) with i ∈ {1, . . . , k} − {s} and Mc ∈ M(C).

Define M = Mc ∪

(

k
⋃

i=1

Mi

)

. Note that M is a matching in G and M does not

saturate x. Moreover, by Lemma 2.5 we conclude that M ∈ M(G).
(ii) Using Lemma 4.5 we conclude thatN(Supp(G−C))∩V (C) = ∅. Thus, N(EG(G)) =

N(Supp(G−C)) = Core(G−C).Moreover, by Lemma 2.1 we have thatN(EG(G))∩
EG(G) = N(Supp(G− C)) ∩ Supp(G− C) = ∅. Therefore,
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R(G) = N(EG(G))− EG(G)

= N(Supp(G− C))− Supp(G− C)

= Core(G− C).

(iii) Just use the items (i) and (ii).
�

Lemma 4.7. Let G be a unicyclic graph of Type II and G{v} a pendant tree. Let
u ∈ V (G) and M ∈ M(G). If u ∈ Core(G{v}) ∪ V (GN(G{v})), then M saturates u.

Proof. Let C the cycle of G. Suppose there is M ∈ M(G) such that M does not
saturate u. Note that M ∩ E(G{v}) is a matching of G{v} and does not saturate u,
thus, by Lemma 2.2 we conclude that M ∩E(G{v}) /∈ M(G{v}). Hence, using Lemma
4.3 we conclude that M /∈ M(G), which is a contradiction. �

Theorem 4.8. Let G be a unicyclic graph of Type II and C its cycle. If |V (C)| is odd,
then

(i) EG(G) =
⋃

v∈V (C)

Supp(G{v})

(ii) R(G) =
⋃

v∈V (C)

Core(G{v})

(iii) S(G) =
⋃

v∈V (C)

V (GN(G{v}))

Proof. (i) Given x ∈ EG(G). Thus, there is M ∈ M(G) such that M does not
saturate x. Then by Lemma 4.7 we conclude that x ∈ Supp(G{v}) for some
v ∈ V (C).
Given x ∈ Supp(G{v}) for some v ∈ V (C). We will obtain M ∈ M(G) such that
M does not saturate x. Suppose first x = v. Since |V (C)| is odd, then there is
Mc ∈ M(C) such that Mc does not saturate v. Let Mw ∈ M(G{w}) such that
Mw does not saturate w for all w ∈ V (C) (notice that Mw exists for Lemma 2.2).

Define M = Mc∪

(

⋃

w∈V (C)

Mw

)

. Consider G−C =
k
⋃

i=1

Ti, where Ti is a connected

component of G−C. Note that M is a matching in G does not saturate v and for
all w ∈ V (C) we have that ν(G{w}) = ν(G{w}−w) (see Lemma 3.3). Moreover,
we have that

|M | = |Mc|+
∑

w∈V (C)

|Mw|

= ν(C) +
∑

w∈V (C)

ν(G{w})

= ν(C) +
∑

w∈V (C)

ν(G{w} − w)

= ν(C) +
k
∑

i=1

ν(Ti) = ν(G).

Then M ∈ M(G). Therefore, x ∈ EG(G).
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Now, suppose x 6= v. Let Mv ∈ M(G{v}) and Mc ∈ M(C) such that Mv

does not saturate x and Mc does not saturate v (notice that Mv by Lemma 2.2).
Consider Mu ∈ M(G{u}) such thatM does not saturate u for all u ∈ V (C)− {v}.

Define M = Mc∪

(

⋃

u∈V (C)

Mu

)

. Similarly we conclude that M ∈ M(G) and does

not saturate x. Hence, x ∈ EG(G).

(ii) Note that N(EG(G)) = V (C)∪

(

⋃

v∈V (C)

Core(G{v})

)

and N(EG(G))∩EG(G) =

V (C). Therefore,

R(G) = N(EG(G))− EG(G)

= N





⋃

v∈V (C)

Supp(G{v})



−
⋃

v∈V (C)

Supp(G{v})

=
⋃

v∈V (C)

Core(G{v}).

(iii) Just use the items (i) and (ii).
�

In this example, we utilize the Theorem 4.8 to obtain the Gallai-Edmonds decompo-
sition of the unicyclic graph G in Figure 3. Consider C the cycle of G. Analyzing the
entries of the vectors of the basis of the N (G{a}), N (G{b}), N (G{c}), N (G{d}) and
N (G{e}) we conclude that support, core and N -vertices set of the pendant trees of G
are given in Table 1.

Support Core N -vertices
Supp(G{a}) = {g, h, a, l, t} Core(G{a}) = {f,m} V (FN(G{a})) = {i, j}
Supp(G{b}) = {b} Core(G{b}) = ∅ V (FN(G{b})) = ∅
Supp(G{c}) = {c, n, p, q} Core(G{c}) = {o} V (FN(G{c})) = {v, r, s, u}
Supp(G{d}) = {d} Core(G{d}) = ∅ V (FN(G{d})) = ∅
Supp(G{e}) = {e} Core(G{e}) = ∅ V (FN(G{e})) = ∅

Table 1. Support, Core and N -vertices of the pendant trees of G.

a

b

c

de
f

g

h

ij

l m

n

o

p q

r st uv

G{a}

G{c}

G{b}

G{e} G{d}

Figure 3. Unicyclic graph of Type II and its pendant trees.
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Note that G is a unicyclic graph of Type II, because a ∈ Supp(G{a}), b ∈ Supp(G{b}),
c ∈ Supp(G{c}), d ∈ Supp(G{d}) and e ∈ Supp(G{e}). Moreover, |V (C)| is odd.
Therefore, by Theorem 4.8 the Gallai-Edmonds decomposition of G is given by:

EG(G) =
⋃

v∈V (C)

Supp(G{v}) = {a, b, c, d, e, g, h, l, t, n, p, q},

R(G) =
⋃

v∈V (C)

Core(G{v}) = {f,m, o},

S(G) =
⋃

v∈V (C)

V (GN (G{v})) = {v, r, s, u, i, j}.

5. Concluding Remark

We have provided in this paper a way to obtain the Gallai-Edmonds decomposition
of unicyclic graphs from the null space of its adjacency matrix.
Similarly to the Gallai-Edmonds decomposition, the Zito decomposition [19] is also a

partition of the vertex set. The difference is that Zito decomposition is defined through
certain properties of the maximum independent sets. In trees and C4k-free bipartite
graphs all three decompositions coincide, that is, form the same partition of the vertex
set [2, 11, 12]. For graphs in general, this is not the case (consider, for example, the
pan graph of order 6, that is, the graph obtained by joining the cycle graph C6 to the
complete graph K1 with an edge).
In view of this fact, the following question naturally arises: Is there a relationship

between Zito decomposition of unicyclic graphs and null decomposition of its subtrees?
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