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Abstract. Trees with a unique maximum independent set encode the maxi-

mum matching structure in every tree. In this work we study some of their

linear properties and give two graph operations, stellare and S-coalescence,
which allow to build all trees with a unique maximum independent set. The

null space structure of any tree can be understood in terms of these graph

operations.

1. Introduction

The trees with a unique maximum independent set were first characterized by
Hopkins and Staton (1985) in [4]. Sander and Sander (2005), see [8], gave another
characterization in terms of the FOX algorithm. In [5] they were characterized
using linear algebra and the null decomposition of trees. Furthermore, in [5] it was
proved that every tree can be decomposed in a forest of subtrees with a unique
(perfect) maximum matching, and a forest of subtrees with a unique maximum
independent set. This last forest encode the main part of the maximum matching
structure of a tree.

In this work we study many properties of the trees with a unique maximum
independent set. We call them independent trees. Furthermore, we describe all
this properties in term of its atom forest (spanning forest of strong unique inde-
pendence subtrees), see Section 4. We also give two graph operations, stellare and
S-coalescence, which allows to build every tree from very simple subtrees.

This paper is organized as follows. In Section 2, we work with atoms trees.
They are independent trees with the property that the complement of its unique
maximum independent set is also an independent set of the tree, see [4]. In Section
3 the trees with a unique independent set are study in depth. Finally, in Section
4 we give the two graph operations which allow building easily every independent
tree.

Let us now introduce some notation required later on. All graphs in this work
are labeled (even when we do not write the labels), finite, undirected and with
neither loops nor multiple edges. Let G be a graph. By V pGq we denoted its set
of vertices, and vpGq :“ |V pGq|. Following Bapat, we use uppercase letters for sets
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and lowercase for their cardinalities, see [1]. Similarly, By EpGq we denote its set of
edges, and by epGq we denote the size of G. The neighborhood of v P V pGq, denoted
by Npvq, is the set tu P V pGq : u „ vu, where u „ v means that tu, vu P EpGq.
The neighborhood of a subset S of vertices of G is NpSq :“

Ť

vPS Npvq. The
closed neighborhood of v, denoted by N rvs, is the set of vertices tvu YNpvq. The
closed neighborhood of S, denoted by N rSs, is the set S Y NpSq. For all graph-
theoretic notions not defined here, the reader is referred to [3]. Let u, v P V pGq.
By G ` tu, vu we denote the graph obtained by adding the edge tu, vu to EpGq.
Let e P EpGq. By G´e we denote the graph obtained by removing the edge e from
G, thus EpG´ eq “ EpGq ´ teu. By degpvq, we denote the degree of a vertex v of
a graph G, that is, degpvq “ |Npvq|. A vertex v of a graph G is a pendant vertex
if degpvq “ 1. We use rns instead of t1, . . . , nu.

Let G be a graph with vertex set V pGq and edge set EpGq. By RG we denote the
vector space of all functions from V pGq to R. Let ~x P RG and v P V pGq. We write
~xv instead of ~xpvq. By ev we denote the standard basis vector at v, i.e. evpuq “ 1
if v “ u and evpuq “ 0 if v ‰ u. With θ we denote the null vector of RG. For all
linear algebra-theoretic notions not defined here, the reader is referred to [6].

2. Atom trees and null decomposition of trees

The null space of a graph G, denoted by N pGq, is the null space of its adjacency
matrix. Thus, N pGq “ N pApGqq. The nullity of G is the nullity of its adjacency
matrix: nullpGq “ nullpApGqq.

The null space of any graph decomposes the vertices of the graph in three sets:
the support, the core, and the invertible part, see [5].

Definition 2.1. Let G be a graph. The support of G, denoted by SupppGq, is the
set of vertices of G

tv P V pGq : D~x P N pGq, such that ~xv ‰ 0u.

The core of G, denoted by CorepGq, is the set of vertices NpSupppGqq ´ SupppGq.
The invertible part of G, denoted by InvpGq, is V pGq ´N rSupppGqs.

The vertices in SupppGq are called the supported vertices of T . Following Bapat,
see [1], we write supppT q instead of |SupppT q|. The vertices in CorepGq are called
the core vertices of T . We write corepT q instead of |CorepT q|. The vertices in
InvpGq are called the invertible vertices of T . We write invpT q instead of | InvpT q|.

The next lemma is a rephrasing of Lemma 2.2 of [5].

Lemma 2.2 ([5]). Let G be a graph. If S Ă SupppGq, then there exists ~x P N pGq
such that for all v P S, ~xv ‰ 0.

An independent set I of a graphG is a set of vertices ofG pairwise non-neighbors.
The independence number of G, denoted by αpGq, is the maximum cardinality of
the independent sets of G. The set of all maximum independent sets of a graph G
is denoted by IpGq, and its cardinality by apGq, i.e. apGq “ |IpGq|.
Lemma 2.3 ([5], Lemma 2.6). If T is a tree, then SupppT q is an independent set
of T .
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The following lemma is a slightly generalized version of Lemma 3.4 in [5].

Lemma 2.4. Let T be tree. If v P CorepT q, then |Npvq X SupppT q| ě 2.

Proof. Clearly |Npvq X SupppSq| ą 0. By Lemma 2.2 there exists ~x P N pT q such
that for all u P SupppT q, we have ~xu ‰ 0. Since

ř

w„v ~xw “ 0, there are at least
two vertices of Npvq such that its respective coordinates in ~x are nonzero, and this
is precisely the assertion of the lemma.

The trees with a unique maximum independent set were first characterized by
Hopkins and Staton (1985), see [4]. In that work they introduce the notion of
strong maximum independent set: Let I be a maximum independent set of
G, if Ic :“ V pGq ´ I is also an independent set of G, then we say that I is a
strong maximum independent set of G. Clearly, graphs with a strong maximum
independent set are bipartite.

Theorem 2.5. Let T be a tree. The following statements are equivalent:

(1) T has a unique strong maximum independent set.
(2) If u and v are pendant vertices of T , then the distance between them even.
(3) The tree T is pSupppT q,CorepT qq-bipartite.

A tree that satisfies any (and hence all of them) of these conditions is called an
atom tree.

Proof. By Theorem 3 of [4] statements (1) and (2) are equivalent. Assume that
(3) holds. By Lemma 2.4, if v is a pendant vertex of T , then v P SupppT q. Hence,
(3) implies (2). In order to prove that (2) implies (3) fix u, a pendant vertex of
T . Any other vertex of T is in a path between u and another pendant vertex of T ,
named w. By P we denote the unique path from u to w in T . We define ~xpu,wq
as follows:

~xpu,wqv “

$

&

%

1 if dpu, vq ”4 0 and v P V pP q,
´1 if dpu, vq ”4 2 and v P V pP q,

0 otherwise.

If ~xpu,wq R N pT q, then there exist z P V pT q such that dpu, zq ”2 1 and
ÿ

vPNpzq

~xpu,wqv ‰ 0.

Therefore, there exists a unique t1 P V pP q XNpzq such that ~xpu,wqt1 ‰ 0. Since
dpu, zq ”2 1, z is not a pendant vertex of T . Therefore there must exist a t2 P
Npzq X pV pT q ´ V pP qq. Redefine ~xpu,wqt2 “ ´~xpu,wqt1 , and P as P ` tt1, zu `
tz, t1u. If this new ~xpu,wq is not in N pT q repeat the former process. After a
finite number of rounds, we arrive to a vector in the null space of T . Hence,
tv P V pT q : dpu, vq ”2 0u Ă SupppT q.

Since T is a tree, the sets V0 “ tv P V pT q : dpu, vq ”2 0u and V1 “ tv P V pT q :
dpu, vq ”2 1u form a bipartition of T . Note that V1 “ N pV0q Ă SupppT q. Thus
V1 Ă CorepT q. Therefore,

V pT q “ V0 Y V1 Ă SupppT q Y CorepT q Ă V pT q,

Hence, SupppT q “ V1 and CorepT q “ V2.
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We usually write A for atom trees. In [4] the atoms trees are called strong unique
independence trees. A very similar notion can be traced in the work of Sander and
Sander, see [8], in terms of the FOX algorithm.

The null decomposition of trees breaks any tree in two forests. A forest of trees
with a unique maximum matching (a perfect matching), and a forest of trees with
a unique maximum independent set. The trees with a unique maximum matching
has a non singular adjacency matrix, see [2], [5], or [1]. They are called invertible
or matching trees.

Let G be a graph. Given U Ă V pGq, the subgraph of G induced by U is denoted
by GxUy. The set of all connected components of a graph G is denoted by KpGq.

Let T be a tree. We set FindeppT q :“ T xN rSupppT qsy, and FmatchpT q :“
T xInvpT qy. The forest FindeppT q is called the independence forest of T . The
forest FmatchpT q is called the matching forest of T . The empty set is simultane-
ously an independence forest of T and a matching forest of T . These notions were
introduced in [5] under the name of S-set and N-set of T .

Theorem 2.6 ([5]). Let T be a tree. The independence forest of T is a forest of
independent trees and the matching forest of T is a forest of matching trees.

Definition 2.7 ([5]). The connection edges of a tree T , denoted by CEpT q, is
the set of all the edges between a core vertex and an invertible vertex:

ttu, vu P EpT q : u P CorepT q and v P InvpT qu.

Let FnullpT q :“ FindeppT q Y FmatchpT q. This forest associated with T is called
the null forest of T . The following result is implicit in [5].

Theorem 2.8 ([5]). If T is a tree, then EpT ´ FnullpT qq “ CEpT q.

We use the same symbol for a forest and for the set of all its connected compo-
nents: H P F means H P KpFq, where F is a forest.

Theorem 2.9 ([5]). If T is a tree, then

SupppT q “
ď

SPFindeppT q

SupppSq,

CorepT q “
ď

SPFindeppT q

CorepSq,

InvpT q “
ď

NPFmatchpT q

InvpNq.

The row space of a graph G, denoted by RpGq, is the row space of its adjacency
matrix. Thus, RpGq “ RpApGqq. The rank of a graph G is the rank of its adjacency
matrix: rkpGq “ rkpApGqq. By νpGq we denote the matching number of G, i.e.
cardinality of a maximum matching of G. By MpGq we denote the set of all
maximum matchings in G. The number of maximum matchings in G is denoted
mpGq. The domination number of G, denoted by γpGq, is the minimum cardinality
of a dominating set of G. The independence number αpGq of a graph G and its
domination number γpGq are related by γpGq ď αpGq.
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Theorem 2.10 ([5]). If T is a tree, then

nullpT q “ supppT q ´ corepT q,

rkpT q “ 2 corepT q ` invpT q,

νpT q “ corepT q `
invpT q

2
,

mpT q “
ź

SPFindeppT q

mpSq,

αpT q “ supppT q `
invpT q

2
,

apT q “
ź

NPFmatchpT q

apNq.

Corollary 2.11. Let T be a tree. Then νpT q “ αpT q ´ nullpT q.

3. Trees with a unique maximum independent set

In this section we study some linear properties of the trees with a unique maxi-
mum independent set.

Theorem 3.1 ([4], Theorem 6, and [5], Section 3 and Corollary 4.18). Let T be a
tree. The following statements are equivalent:

(1) apT q “ 1,
(2) SupppT q is the unique maximum independent set of T ,
(3) N rSupppT qs “ V pT q,
(4) T has a spanning forest F such that each component of F is an atom tree,

and each edge in EpT q ´ EpFq joins two core vertices of T .

A tree that satisfies any (and hence all of them) of these conditions is called an
independent tree.

An independent tree and its spanning forest of atom trees is shown in Figure
1. In [5] the independent trees are called S-trees, because the spotlight was on the
linear structure of the null space of the adjacency matrix. The independent trees
can also be characterized via FOX algorithm, see [8].

From this result, an independent tree can be built from a forest of atom trees.
In the next section we give two graph-theoretical operations, with linear algebra
flavor, that allow us to build every independent tree.

Definition 3.2. The bond edges of a tree T , denoted by BEpT q, is the set of all
the edges between core vertices:

ttu, vu P EpT q : u, v P CorepT qu.

We prove that for each independent tree there exist just one spanning forest of
atoms: FatompT q :“ KpT ´BEpT qq, see Theorem 3.5. They also are important for
the maximum matching structure of any tree. See Corollary 3.8.

Let T be an independent tree. Let F be a spanning forest of atoms of T such
that EpT q ´ EpFq Ă BEpT q, and A P F . Then
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(1) degT pvq “ degApvq, for all v P SupppT q X V pAq,
(2) if v is a pendant vertex of A, then v is a pendant vertex of T .

We need the following notation introduced in [5]. Given a graph G, let ~x be a
vector of RG. Let H be a subgraph of G. The vector obtained when we restrict
~x to the coordinates (vertices) associated with H is denoted by ~x åGH . By ~y äG

H we
denote the lift of vector ~y P RH to a vector of RG: for any u P V pGq ´ V pHq,
p~yäGHqu :“ 0, and for any u P V pHq, p~yäGHqu :“ ~yu.

Theorem 3.3. Let T be an independent tree and F be a spanning forest of atoms
of T such that EpT q ´ EpFq Ă BEpT q. Then the following statements hold.

(1) If A P F , then
(a) SupppAq “ SupppT q X V pAq,
(b) CorepAq “ CorepT q X V pAq.

(2) SupppT q “
Ť

APF SupppAq.
(3) CorepT q “

Ť

APF CorepAq.

Proof. By Lemma 2.2, we can take ~x P N pT q such that ~xv ‰ 0 if and only if
v P SupppT q.

Claim 1: ~xåTAP N pAq.
Therefore, SupppT q X V pAq Ă SupppAq. Hence, CorepAq Ă CorepT q X V pAq.
Claim 2: CorepT q X V pAq Ă CorepAq.
Since

pSupppT q X V pAqq 9YpCorepT q X V pAqq “ V pAq “ SupppAq 9YCorepAq,

we can conclude that SupppT q X V pAq “ SupppAq.
Proof of the Claim 1. We proof the claim in a coordinatewise fashion. If v P

SupppAq, then

pApAq ~xåTAqv “ pApT q~xqv “ 0.

If v P CorepAq, then

0 “ pApT q~xqv “ pApAq ~xå
T

Aqv `
ÿ

u„v
uRV pAq

~xu.

Since, if u „ v and u R V pAq, then tu, vu P EpT q´EpFq Ă BEpT q. Hence, ~xu “ 0,
if u „ v and u R V pAq. Therefore, pApAq ~xåTAqv “ 0. This proves the claim 1.

Proof of the Claim 2. If v P CorepT q X V pAq, then there exists u P SupppT q
such that u „ v. Therefore, since EpT q ´ EpFq Ă BEpT q, the vertex u is a vertex
of A. Thus, u P SupppT q X V pAq Ă SupppAq. Hence, since v P V pAq, we conclude
v P CorepAq.

The other two statements are now obvious.

Corollary 3.4. Let T be an independent tree and F be an spanning forest of
atoms of T such that EpT q´EpFq Ă BEpT q. Let e P EpT q´EpFq and tT1, T2u :“
KpT ´ eq. Then F1 :“ FxpT1qy is a spanning forest of atoms of T1 such that
EpT1q ´ EpF1q Ă BEpT1q, and F2 :“ FxV pT2qy is a spanning forest of atoms of
T2 such that EpT2q ´ EpF2q Ă BEpT2q. Furthermore F “ F1 Y F2.
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(a) An independent tree T (b) Its atom forest FatompT q

Figure 1. An independent tree T and its atom forest FatompT q.

The next results says that the forest decomposition into atoms of independent
trees is unique.

Theorem 3.5. Let T be an independent tree. If F is a spanning forest of atoms
of T such that EpT q ´ EpFq Ă BEpT q, then F “ FatompT q.

Proof. By induction on |BEpT q| and Corollary 3.4.

Theorem 3.6 ([5]). If T is an independent tree and M P MpT q, then each edge
of M matches one supported vertex with one core vertex of T .

The next result is a direct consequence of 3.6.

Corollary 3.7. Let T be an independent tree. The following statements are true
(the proofs are similar to the ones in [5]).

(1) If M PMpT q, then for each A P FatompT q we have M X EpAq PMpAq.
(2) For each A P FatompT q, let MA PMpAq. Then

ď

APFatompT q

MA PMpT q.

Corollary 3.8. If T is an independent tree, then

mpT q “
ź

APFatompT q

mpAq.

The null decomposition of trees says, amongst other things, that the “variations”
in the maximum matching structure of any tree are determined by its independent
forest, while the “variations” in the maximum independent structure of any tree
are determined by its matching forest. Parts of following theorem are implicit in
[5].

Theorem 3.9. Let T be a tree. The following statements are true:
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(1) If M P MpT q, then for each S P FindeppT q we have M X EpSq P MpSq,
and for each H P FmatchpT q we have M XEpHq is the perfect matching of
H.

(2) For each H P FnullpT q, let MH PMpHq. Then
ď

HPFnullpT q

MH PMpT q.

(3) If I P IpT q, then for each N P FmatchpT q we have I X V pNq P IpNq,
and for each S P FindeppT q we have I X V pSq “ SupppSq is the unique
maximum independent set of S.

(4) For each H P FnullpT q, let IH P IpHq. Then
ď

HPFnullpT q

IH P IpT q.

Proof. The proofs of statements (1) and (2) are implicit in [5]. By Theorem 3.3
we know that SupppT q “

Ť

SPFindeppT q
SupppSq, and that for all S P FindeppT q,

SupppSq “ SupppT qXV pSq. The vertices of T satisfy V pT q “
Ť

SPFindeppT q
V pSqY

Ť

NPFmatchpT q
V pNq, where at most one of the “big” unions can be empty. If I is a

maximum independent set of a tree T , then

supppT q `
invpT q

2
“ |I|

“
ÿ

SPFindeppT q

|I X V pSq| `
ÿ

NPFmatchpT q

|I X V pNq|

ď
ÿ

SPFindeppT q

supppSq `
ÿ

NPFmatchpT q

vpNq

2

“ supppT q `
invpT q

2
,

Hence, for each S P FindeppT q we have |I X V pSq| “ supppSq, and for each N P

FmatchpT q, we have |I X V pNq| “ vpNq{2. Hence, I X V pSq “ SupppSq, because
IXV pSq is an independent set of S and S has a unique maximum independent set:
SupppSq. Similarly, for all N P FmatchpT q we have I X V pNq is an independent set

of N and |I X V pNq| “ vpNq
2 . Therefore, for all N P FmatchpT q the set I X V pNq is

a maximum independent set of N .
Statement (4) is a direct consequence of Theorem 2.8.

Corollary 3.10. Let T be a tree. If I P IpT q, then I X SupppT q “ SupppT q and

|I X InvpT q| “ invpT q
2 .

The maximum degree of all the core vertices in an atom tree A will be denoted
by ∆corepAq. It provides a lower bound for the nullity of A.

Theorem 3.11. Let A be an atom tree. Then nullpAq ě ∆corepAq ´ 1.
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Proof. Let A be an atom tree, and u P CorepAq such that degpuq “ ∆corepAq. It is
clear that:

supppAq ě ∆corepAq `
ÿ

vPCorepAq
dpv,uq“2

1`
ÿ

vPCorepAq
dpv,uq“4

1` ¨ ¨ ¨ `
ÿ

vPCorepAq
dpv,uq“diampAq´2

1

“ ∆corepAq ` pcorepAq ´ 1q

Then, by Theorem 2.10, nullpAq “ supppAq ´ corepAq ě ∆corepAq ´ 1.

For any atom tree A, its rank is 2 corepAq. But actually, we can give a basis of
its row space.

Definition 3.12. Let v P CorepT q, the v-bouquet of T , denoted by Rpvq, is

Rpvq :“ tu P SupppT q : u „ vu.

The v-bouquet vector, denoted by ~Rpvq, is

~Rpvq “
ÿ

uPRpvq

eu.

The “R” is because bouquet is “ramillete” in Spanish.

Lemma 3.13. Let A be an atom tree. The set

BrkpAq :“ tev, ~Rpvq P RA : v P CorepAqu,

is a basis of RpAq, the row space of A.

Proof. Let A˚u be the column of ApAq, the adjacency matrix of A, associated with
the vertex u. If u P SupppAq, then

A˚u “
ÿ

vPCorepAq
v„u

ev.

If u P CorepAq, then

A˚u “
ÿ

vPSupppAq
v„u

ev “ ~Rpuq.

Hence, RpAq Ă xBrkpAqy. Clearly BrkpAq is a set of linearly independent vectors,
and |BrkpAq| “ 2 corepAq. Therefore, BrkpAq is a basis of RpAq.

Let G be a graph and H a subgraph of G. Let A Ă RH and B Ă RG. By AäGH
we denote the following set of vectors of RG: t~xäGH : ~x P Au, and by B åGH we denote
the following set of vectors of RH : t~yåGH : ~y P Bu.

Theorem 3.14. Let T be an independent tree. Then

(1) nullpT q “
ř

APFatompT q
nullpAq,

(2) rkpT q “
ř

APFatompT q
rkpAq,

(3) N pT q “
À

APFatompT q
N pAqäTA, and

(4) RpT q “
À

APFatompT q
RpAqäTA.
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Proof. Statements (1) and (2) follow by applying Theorem 2.10 to independent
trees and atom trees in particular, taking into account Theorem 3.3.

Proof of statement (3). It is clear that all the subspaces N pAq are orthogonal.
On one hand, an argument similar to the proof of Claim 1 in Theorem 3.3 proves
that if ~x P N pT q, then ~xåTAP N pAq for A P FatompT q. On the other hand, for each
A P FatompT q, let ~xpAq P N pAq. Since

ApT q

¨

˝

ÿ

APFatompT q

~xpAqäTA

˛

‚“
ÿ

APFatompT q

pApAq~xpAqqäTA“ θ,

we have
À

APFatompT q
Ă N pT q.

Now we prove (4). Clearly the Similar arguments allow us to prove the following
theorem. RpAq äTA are all orthogonal. Let u be a vertex of T . Let A P FatompT q
such that u P V pAq. Let ApT q˚u be the column of ApT q, and let ApAq˚u be the
column of ApAq both associated with the vertex u. Then

ApT q˚u “ ApAq˚u ä
T

A `
ÿ

tu,vuPBEpT q

ev.

Hence, by Lemma 3.13, RpT q Ă
À

APFatompT q
RpAq äTA. The statement (3) follows

from statement (2).

Corollary 3.15. Let T be an independent tree. Then

ď

APFatompT q

BrkpAqä
S

A,

is a basis of RpT q.

By BCpRGq we denote the standard basis of RG. Let T be a tree. The atom
forest of T , denoted by FatompT q is the forest

ď

SPFindeppT q

FatompSq.

Corollary 3.16. Let T be a tree. Then

ď

NPFmatchpT q

BCpRN qäT

N Y
ď

SPFindeppT q

¨

˝

ď

APFatompT q

BRpAqä
S

A

˛

‚äT

S

is a basis of RpT q.

Similar arguments allow us to prove the following theorem.
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Theorem 3.17. If T is a tree, then

RpT q “
à

NPFmatchpT q

RpNqäTN ‘
à

APFatompT q

RpAqäTA,

rkpT q “
ÿ

NPFmatchpT q

rkpNq `
ÿ

APFatompT q

rkpAq,

N pT q “
à

APFatompT q

N pAqäTA,

nullpT q “
ÿ

APFatompT q

nullpAq.

4. Graph operations closed in independent trees

Now we will define two graph operations under which the independent trees
are closed. These operations are important because they allow thinking about
independent trees without finding null spaces or a forest of atoms.

4.1. Stellare.

Definition 4.1. Let G be a labeled graph of order n, with labels rns. The ˚pk1, . . . , knq-
stellare of G is the graph obtained by adding ki ě 2 pendant vertices to vertex i
of G.

In the following, let ˚G denote an arbitrary, but otherwise fixed, stellare of G.
An example is shown in Figure 2. Instead of to say a stellare of a tree we just say
a stellare tree.

1

2

3

4

5 6

(a) A tree T

1,0

2,0

3,0

4,0

5,0 6,0

2,2

2,32,1

1,2

1,2

1,1

1,4 3,2

3,33,1

6,2

6,3

6,15,1

5,2

4,1

4,2

(b) ˚p4, 3, 3, 2, 2, 3qT

Figure 2. ˚p4, 3, 3, 2, 2, 3qT is a stellare tree of T
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Theorem 4.2. If T is a tree, then ˚T is an independent tree, with Corep˚T q “
V pT q and Suppp˚T q “ V p˚T q ´ V pT q.

Proof. Take v P V p˚T q ´ V pT q. By the stellare definition there exists u P V pT q
and w P V p˚T q such that u „ v, the vertices v, w are neighbors of u in ˚T , and
w R V pT q. Let ~x be a vector of R˚T such that

~xi “

$

&

%

1 if i “ v,
´1 if i “ w,

0 otherwise.

Clearly Ap˚T q ~x “ θ. Hence, V p˚T qzV pT q “ Suppp˚T q. By the stellare definition
we have that N rV p˚T q ´ V pT qs “ V p˚T q. Hence, we conclude that ˚T is an
independent tree, Corep˚T q “ V pT q, and Suppp˚T q “ V p˚T qzV pT q.

Corollary 4.3. Given a tree T with labels rns, and k1, . . . , kn a list of n integers,
each greater than or equal to 2. Then

(1) nullp˚pk1, . . . , knqT q “
řn

i“1 ki ´ n ě n ě nullpT q, where equality holds if
and only if n “ 1 and k1 “ 2,

(2) rkp˚T q “ 2n ą rkpT q,
(3) αp˚pk1, . . . , knqT q “

řn
i“1 ki ě 2n ą αpT q,

(4) νp˚T q “ n ą νpT q,
(5) mp˚pk1, . . . , knqT q “

śn
i“1 ki,

(6) γp˚T q “ n ą γpT q, and V pT q is the only minimum (and total, if n ě 2)
dominating set of any ˚T .

Proof. The statements 1 and 2 follow from Theorem 2.10 and Theorem 4.2. State-
ment 3 follows from Theorem 2.10, Theorem 4.2, and Theorem 2.10. Statements 4
and 5 follow from Theorem 2.10, Theorem 4.2, and Theorem 2.10. Statement 6 is
clear.

Theorem 4.4. Let T be a tree and ˚T a stellare of T . Then the set of vectors of
R˚T ,

BrkpT q :“ tev, ~Rpvq P Rp˚T q : v P V pT qu,

is a basis of Rp˚T q.

Proof. By Corollary 4.3, rkp˚T q “ 2vpT q. Therefore, we only need to prove that
the columns of the adjacency matrix of ˚T are linear combinations of the vectors
of Brk. For v P V p˚T q, let Av denote the column of Ap˚T q associated with the
vertex v. Thus, if v P Suppp˚T q, then Av “ ew, for some w P Corep˚T q “ V pT q
and w „ v. If v P Corep˚T q “ V pT q, then

Av “ eRpvq `
ÿ

wPV pT q
w„v

ew.

Given a tree T with labels rns, the stellare labeling of ˚pk1, . . . , knqT is the
set

tpu,wq : u P rns, and w P t0, 1, . . . , kuuu,
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where the vertices labeled with pu, 0q are the core vertices of ˚T , and the vertices
labeled with pu,wq, where w P t1, . . . , kuu, are the supported vertices of ˚T which
are neighbors of u. See Figure 2.

Lemma 4.5. Let T be a tree of order n and ˚pk1, . . . , knqT a stellare of T . Then
the following set of vectors is a basis of the null space of ˚pk1, . . . , knqT

BnullpT q :“ t~bpi, jq P R˚T : i P rns, j P t2, . . . , kiuu,

where

~bpi, jqpu,wq “

$

&

%

1 if u “ i and w “ 1,
´1 if u “ i and w “ j,

0 otherwise.

Proof. The set BnullpT q is a set of linear independent vectors. A direct computation

shows that Ap˚T q~b “ θ for all ~b P BnullpT q. As |BnullpT q| “ suppp˚T q ´ corep˚T q,
then by Theorem 2.10 the set Bnull is a basis of the null space of ˚pk1, . . . , knqT .

4.2. S-coalescence.

Definition 4.6. Let T1, . . . , Tk be k disjoint independent trees. Let vi P SupppTiq,
for each i P rks. The S-coalescence of pT1, v1q, . . . , pTk, vkq, denoted by

k
æ

i“1

pTi, viq

is the tree obtained by identifying all the vertices vi, denoting this single vertex by

v˚. Let NTipviq be the neighborhood of vi in Ti. Then
Æk

i“1pTi, viq is the tree with
the set of vertices

V

˜

k
æ

i“1

pTi, viq

¸

“

˜

ď

1ďiďk

pV pTiq ´ tviuq

¸

Y tv˚u,

and the set of edges

E

˜

k
æ

i“1

pTi, viq

¸

“ ttu, v˚u : u P NTipviqu Y
k
ď

i“1

EpTiq ´ ttu, viu : u P NTipviqu .

The following theorem proves that independent trees are closed under S-coalescence.

Theorem 4.7. Let T1, . . . , Tk be k disjoint independent trees and vi P SupppTiq.

Then
Æk

i“1pTi, viq is an independent tree.

Proof. It is left to the reader.

Corollary 4.8. Let T1, . . . , Tk be k disjoint independent trees, and vi P SupppTiq
for i P rks. Then

(1) Corep
Æk

i“1pTi, viqq “
Ťk

i“1 CorepTiq.

(2) corep
Æk

i“1pTi, viqq “
řk

i“1 corepTiq.

(3) Suppp
Æk

i“1pTi, viqq “ tv
˚u Y

Ťk
i“1 pSupppTiq ´ tviuq.
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v1

v2v3

(a) Independent trees T1,
T2, and T3

v˚

(b)
3
Æ

i“1

pTi, viq

Figure 3. S-coalescence of tree independent trees.

(4) suppp
Æk

i“1pTi, viqq “ 1´ k `
řk

i“1 supppTiq.

(5) rkp
Æk

i“1pTi, viqq “
řk

i“1 rkpTiq.

(6) nullp
Æk

i“1pTi, viqq “ 1´ k `
řk

i“1 nullpTiq.

(7) νp
Æk

i“1pTi, viqq “
řk

i“1 νpTiq.

(8) mp
Æk

i“1pTi, viqq ă
śk

i“1mpTiq.

(9) αp
Æk

i“1pTi, viqq “ 1´ k `
řk

i“1 αpTiq.

Proof. Clearly (1) and (4) follow from (3), and (2) follows from (1). Further, (5)
follows from (2) and Theorem 2.10. The statement (6) follows from (2), (4), and
(5). The statement (7) follows from Theorem 3.6 and (2). Finally, (9) follows from
Theorem 2.10 and (4).

In order to prove (3), let ~y P Suppp
Æk

i“1pTi, viqq. Without loss of generality we
assume that ~yv˚ “ 1. As

ApTiq
`

pyå
Æk

i“1pTi, viq

Ti ´ vi
qäTiTi ´ vi `evi

˘

“ θ,

where evi
is a canonical vector of RTi . Thus,

Suppp
k
æ

i“1

pTi, viqq Ă tv
˚u Y

˜

k
ď

i“1

SupppTiq ´ tviu

¸

.

Hence, by the proof of Theorem 4.7, (3) follows.
To prove (8), just note that there is an injection between the maximum match-

ings of
Æk

i“1pTi, viq and
śk

i“1MpTiq. Let M P Mp
Æk

i“1pTi, viqq, and ui P V pTiq
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such that tui, v
˚u PM . Then

M ´ tui, v
˚u ` tui, viu P

k
ź

i“1

MpTiq.

But this injection is not onto. Let Mpiq PMpTiq such that vi P V pMpiqq. Clearly,

every matching M PMp
Æk

i“1pTi, viqq has cardinality lower than
śk

i“1Mpiq.

It is clear that any S-coalescence of an atom tree is an atom tree.

Proposition 4.9. Atom trees are closed under S-coalescence.

The set of all supported vertices with degree greater than one carries structural
information about trees. They mark in the tree where the S-coalescences were
made.

Theorem 4.10. Let T be an independent tree. If v P SupppT q and degpvq ą 1,
then T is an S-coalescence of independent trees.

Proof. It is left to the reader.

We can apply the former decomposition a finite number of times in order to get
the set of stellare trees that form the given independent tree T .
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rales. Universidad Nacional de San Luis. San Luis, Argentina

Email address: gonzalo.molina.tag@gmail.com
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