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Let G be a graph with n vertices and Gc be its complement. The annihilation
number of G, denoted by a(G), is a graph invariant used as a sharp upper
bound for the independence number. In this paper, we present the following
bounds and Nordhaus-Gaddum type inequalities for the annihilation number⌊n

2

⌋
≤ a(G) ≤ n 2

⌊n
2

⌋
≤ a(G) + a(Gc) ≤ n+

⌊n
2

⌋
.

We also investigate the extremal behavior of the invariant and showed that
both parameters satisfy the interval property. In addition, we characterize
some extremal graphs, ensuring that the bounds obtained are the best possible.
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1 Introduction
The independence number of a graph is the cardinality of a largest set of mutually non-
adjacent vertices. We observed that it is not always possible to determine the number
of independence of a graph, since this is a well-known widely-studied NP-hard problem
[10], and for this reason bounds for the independence number of a graph are investigated
[11, 22]. Therefore, approximating this invariant through inequalities represents a relevant
research topic.

The annihilation number of a graph G, denoted by a(G), is a polynomial time com-
putable upper bound for the independence number. It was originally defined by R. Pep-
per [21] in terms of a reduction process of the degree sequence that is associated with the
process developed by Havel [14] and Hakimi [13] to determine when a given sequence of
non-negative integers could be realized as the degree sequence of a graph, see in [12].

∗Departamento de Matemáticas. Facultad de Ciencias Físico-Matemáticas y Naturales. Universidad
Nacional de San Luis. Instituto de Matemáticas Aplicadas de San Luis, IMASL-CONICET, San Luis,
Argentina. djaume@unsl.edu.ar

†Instituto de Matemática, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. guil-
herme.porto@ufrgs.br

‡Departamento de Matemáticas. Facultad de Ciencias Físico-Matemáticas y Naturales. Universidad
Nacional de San Luis. Instituto de Matemáticas Aplicadas de San Luis, IMASL-CONICET, San Luis,
Argentina. mlpuliti@unsl.edu.ar

1



While reading the original definition, Fajtlowicz noted that the largest integer k such
that the sum of the smallest k degrees of graph G was at most its number of edges e(G)
is equivalent to the annihilation number a(G) [18, 21], that is

a(G) = max

{
k ∈ N :

k∑
i=1

di ≤ e(G)

}
.

The annihilation number and the independence number are used to investigate the
relationship between the reactivity of an organic molecule, represented by a graph, and
its independence number. More precisely, the research states that, for a fixed number
of vertices, molecules with a lower number of independence are, in general, less reactive
than molecules with a greater number of independence. This study is known in organic
chemistry as the independence-stability hypothesis and was originally developed by S.
Fajtlowicz [8, 9] and studied by R. Pepper [21].

In 1956, E. Nordhaus and J. Gaddum [20] gave lower and upper bounds on the sum
and the product of the chromatic number of a graph and its complement in terms of the
order of the graph. Since then, the Nordhaus-Gaddum problem is related to find lower
and upper bounds to the following:

ρ(G) + ρ(Gc) and ρ(G)ρ(Gc),

where ρ(G) is a graph invariant. In general these inequalities are quite elegant as they
reveal extremal values for a graph parameter and its complement. On the other hand, it
may be quite difficult to be obtained.

M. Aouchiche and P. Hansen [1] surveyed the Nordhaus-Gaddum type inequalities for
various invariants of a graph, in particular, for invariants whose definitions are based on
the cardinalities of particular subsets of the graph, such as the independence number,
the domination number, the Roman domination number, the total domination number,
among others. The relationship between these domination parameters and the annihilation
number has been studied by several authors [3, 4, 5, 6, 7, 16, 19, 23], establishing a valuable
connection with the Nordhaus-Gaddum inequalities for them.

In this paper, we present an upper and lower bound for the annihilation number of any
graph G and prove that those bounds are the best possible. To state the results we denote
by Kn and Sn the complete graph and the star graph on n vertices, respectively.

Theorem 1. Let G a graph of order n. Then⌊n
2

⌋
≤ a(G) ≤ n.

Equality hold in the upper bound if and only if G is isomorphic to nK1.
If G is a non-empty k-regular graph then the equality hold in the lower bound.

Besides, as the main result, we show a solution to the Nordhaus-Gaddum problem for
the annihilation number for any graph G and prove that those bounds are the best possible.

Theorem 2. Let G a graph of order n. Then

2
⌊n
2

⌋
≤ a(G) + a(Gc) ≤ n+

⌊n
2

⌋
.

For n even, the equality hold in the upper bound if and only if G or Gc is isomorphic to
nK1.
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For n odd, the equality hold in the upper bound if and only if G or Gc is isomorphic to
nK1 or Sdn+1 ∪ (n− dn − 1)K1, for

⌊
n
2

⌋
≤ dn ≤ n− 1.

If G and Gc are non-empty graphs and G is a k-regular graph then the equality hold in the
lower bound.

We emphasize that while the upper bounds have a simple expression, characterizing the
extremal graphs is not straight, and that the lower bounds are satisfied for many graphs.

We say that a parameter of a graph satisfies the interval property if each integer value in
an interval is realized by at least one graph. The interval property was studied recently in
[2, 15, 17] and generalizes the behavior of a parameter in an interval making it a relevant
research topic.

Using the results of Theorems 1 and 2 we establish the maximum and minimum values
for both parameters investigated. As a consequence, we prove that the annihilation number
and its Nordhaus-Gaddum problem associated with the sum satisfy the interval property.

The remainder of the paper is organized as follows. In the next section we present
the notations and preliminaries used. The section 3 is devoted to prove the bounds for
the annihilation number and its interval property. In section 4, we developed the nec-
essary preliminaries to demonstrate the main result and, finally, we show a solution for
the Nordhaus-Gaddum problem associated with the annihilation number and its interval
property.

2 Notations and Preliminaries
Throughout this paper we will consider that G = (V (G), E(G)) is a simple graph of order
n = |V (G)| and size e(G), where V (G) is the set of vertices and E(G) is the set of edges.

The complement of G, denoted by Gc, is the graph with V (Gc) = V (G) and E(Gc) =
E(Kn) − E(G), in other words, it is the graph with the same vertex set such that two
distinct vertices of Gc are adjacent if and only if they are not adjacent in G.

The degree di of a vertex vi is the number of its neighbors, that is, it is the number of
edges incident in vi. The degree sequence of a graph G is given by D(G) = (d1 ≤ · · · ≤ dn),
where di is the i-th smallest degree of G. A well-known result relates the sum of the degrees
of a graph with its number of edges.

Lemma 3. Let G a graph of order n then
∑n

i=1 di = 2e(G).

Since each edge defined by the n vertices of V (G) is either in E(G) or E(Gc) it follows
that the degree sequence of Gc is defined by D(G) in the following form

D(Gc) = (dc1 ≤ · · · ≤ dci ≤ · · · ≤ dcn)

= (n− 1− dn ≤ · · · ≤ n− 1− dn+1−i ≤ · · · ≤ n− 1− d1). (1)

A k-regular graph is a graph in which every vertex has degree k. The relation between
D(G) and D(Gc) provides the following result.

Lemma 4. Let G a k-regular graph of order n then Gc is a (n− k − 1)-regular graph.

Our interest in interval property was briefly discussed in the introduction. In order to
develop this investigation, we enunciate the definition of the interval property. Let G be a
collection of graphs and ξ : G → R be a parameter of a graph defined on G. We say that
ξ has the interval property on G if ξ(G) = I ∩ Z, for some interval I ⊂ R.
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3 Bounds for Annihilation Number
In this section we present bounds for the annihilation number a(G) of a graph and prove
that they are the best possible by characterizing the extremal graphs. Moreover, we show
that the annihilation number satisfies the interval property.

Theorem 1. Let G a graph of order n. Then⌊n
2

⌋
≤ a(G) ≤ n.

Equality hold in the upper bound if and only if G is isomorphic to nK1.
If G is a non-empty k-regular graph then the equality hold in the lower bound.

Proof. The upper bound follows trivially from the definition, so it remains to consider
the equality case. Suppose a(G) = n, follows from the definition of annihilation number
and by Lemma 3 that

2e(G) =
n∑

i=1

di ≤ e(G),

this implies that e(G) = 0 and the only graph that satisfies this condition is G = nK1.
To demonstrate the lower bound we proceed by contradiction. Suppose a(G) = k <

⌊
n
2

⌋
,

using the definition of annihilation number and Lemma 3 we have

2e(G) =
n∑

i=1

di =
k+1∑
i=1

di +
n∑

i=k+2

di > e(G) +
n∑

i=k+2

di,

this implies that
n∑

i=k+2

di < e(G) <
k+1∑
i=1

di,

a contradiction. So we conclude that a(G) ≥
⌊
n
2

⌋
.

For the lower bound extremal cases, note that if G is a non-empty k-regular graph then
Lemma 3 ensures that e(G) = nk

2 , and this implies that a(G) =
⌊
n
2

⌋
. This example ensures

that the lower bound obtained is the best possible. �

As a consequence, we can show that for each integer value in the interval
(⌊

n
2

⌋
, n

)
there

is at least one graph with this annihilation number, that is, the parameter satisfies the
interval property.

Corollary 5. Let n and k be integers such that
⌊
n
2

⌋
+ 1 ≤ k ≤ n− 1. If G is isomorphic

to (n− k)K2 ∪ (2k − n)K1, then a(G) = k.

Proof. Suppose that G = (n−k)K2∪(2k−n)K1. Note that G has the following properties:
• 2n− 2k vertices of degree 1;
• 2k − n vertices of degree 0;
• n− k edges.

Adding the k smallest degrees of G we have

k∑
i=1

di =
2k−n∑
i=1

di +
k∑

i=2k−n+1

di = 0 + (n− k) = e(G).

This implies that the annihilation number of G is k and completes the proof. �
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The lower bound presented in Theorem 1 was obtained by R. Pepper [21], however, the
original proof uses the definition given by the reduction process of the degree sequence,
while our demonstration uses the new approach given by the equivalent definition of Fajt-
lowicz, which is most appropriate to investigate the extremal behavior of the annihilation
number.

4 Nordhaus-Gaddum for Annihilation Number
In this section we show a solution to the Nordhaus-Gaddum problem associated with the
annihilation number and we characterize some of its extremal graphs. In the end, we
demonstrate that the parameter a(G) + a(Gc) satisfies the interval property.

First, we developed the preliminaries necessary to carry out the proof of the main result.
For this, we characterize all graphs with annihilation number equal to n− 1. This result
has an important role in the characterization of extremal graphs of the Nordhaus-Gaddum
problem.

Lemma 6. Let G be a graph of order n with a(G) = n − 1, then G is isomorphic to
Sdn+1 ∪ (n− dn − 1)K1.

Proof. From the definition of annihilation number and by Lemma 3 we have that

2e(G) =
n∑

i=1

di =
n−1∑
i=1

di + dn ≤ e(G) + dn,

and this implies that dn ≥ e(G).
By definition of degree we obtain that dn = e(G), consequently, we have that all the

edges of G are incident on vn. This condition characterizes the connected component
induced by vertex vn as the star graph Sdn+1 and we conclude that G is isomorphic to
Sdn+1 ∪ (n− dn − 1)K1. �

In the following, we present a useful technical lemma to proof of the main result of this
section.

Lemma 7. Let G be a graph of order n, k an integer with 1 ≤ k ≤
⌊
n
2

⌋
− 1 and denote

x = k(n− 1)−
n∑

i=n−k+1

di.

If 1 ≤ x ≤ k − 1 then dn = · · · = dn−k+x+1 = n− 1 and dn−k+x ≥ n− 2.

Proof. Note that x = k(n− 1)−
n∑

i=n−k+1

di implies that

n∑
i=n−k+x+1

(n− 1− di) +
n−k+x∑

i=n−k+1

(n− 2− di) = 0.

If
n∑

i=n−k+x+1

(n − 1 − di) > 0, then dn−k+x+1 ≤ n − 2 and
n−k+x∑

i=n−k+1

(n − 2 − di) < 0, a

contradiction, because dn−k+1 ≤ · · · ≤ dn−k+x ≤ dn−k+x+1 ≤ n− 2.
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Therefore,
n∑

i=n−k+x+1

(n−1−di) = 0 and this implies that dn = · · · = dn−k+x+1 = n−1.

Moreover, we have
n−k+x∑

i=n−k+1

(n− 2− di) = 0, which ensures dn−k+x ≥ n− 2. �

Finally, we present a result on the Nordhaus-Gaddum problem associated with the
annihilation number.

Theorem 2. Let G a graph of order n. Then

2
⌊n
2

⌋
≤ a(G) + a(Gc) ≤ n+

⌊n
2

⌋
.

For n even, the equality hold in the upper bound if and only if G or Gc is isomorphic to
nK1.
For n odd, the equality hold in the upper bound if and only if G or Gc is isomorphic to
nK1 or Sdn+1 ∪ (n− dn − 1)K1, for

⌊
n
2

⌋
≤ dn ≤ n− 1.

If G and Gc are non-empty graphs and G is a k-regular graph then the equality hold in the
lower bound.

Proof. The lower bound follows directly from the application of Theorem 1 in G and
Gc. For the extremal cases, note that if G is a non-empty k-regular graph then Gc is a
non-empty (n− k − 1)-regular graph, from Theorem 1 we have that a(G) = a(Gc) =

⌊
n
2

⌋
.

This example ensures that the lower bound is the best possible.
To demonstrate the upper bound we use the definition of annihilation number and the

relation between the sequences of the degrees of G and Gc given in (1). So we have

a(G)(n− 1)−
n∑

i=n+1−a(G)

dci =

a(G)∑
i=1

di ≤ e(G), and

a(Gc)(n− 1)−
n∑

i=n+1−a(Gc)

di =

a(Gc)∑
i=1

dci ≤ e(Gc).

Adding the inequalities and using Lemma 3 we get

[a(G) + a(Gc)](n− 1) ≤ e(G) + e(Gc) +
n∑

i=n+1−a(Gc)

di +
n∑

i=n+1−a(G)

dci

≤ e(G) + e(Gc) +
n∑

i=1

di +
n∑

i=1

dci

= e(G) + e(Gc) + 2e(G) + 2e(Gc)

=
n(n− 1)

2
+ 2

[
n(n− 1)

2

]
.

Note that a(G) and a(Gc) are integers, so simplifying the inequality above we get the
result

a(G) + a(Gc) ≤
⌊n
2

⌋
+ n.

To characterize the extremal graphs remember that a(G) = n if and only if G is isomor-
phic to nK1 (Theorem 1) and, consequently, we have that a(Gc) = a(Kn) =

⌊
n
2

⌋
. Clearly

this is an extremal case, moreover, it is the only case with a(G) = n.
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If there is another graph G that satisfies the equality of the upper bound then it must
have a(G) = n − k and a(Gc) =

⌊
n
2

⌋
+ k, for k integer with 1 ≤ k ≤

⌊
n
2

⌋
− 1 when n is

even and 1 ≤ k ≤
⌊
n
2

⌋
when n is odd. We separated the characterization of the extremal

graphs for the upper bound in cases.
Case 1: n is even.
We proceed by contradiction to show that no other graph satisfies the upper bound.

Using the inequalities of the upper bound proof, we have

a(G)(n− 1)−
n∑

i=n+1−a(G)

dci =

a(G)∑
i=1

di ≤ e(G), and
a(Gc)∑
i=1

dci ≤ e(Gc).

Adding the inequalities and replacing a(G) and a(Gc) we get

(n− k)(n− 1) ≤ e(G) + e(Gc) +

n∑
i=k+1

dci −

n
2
+k∑

i=1

dci .

Note that for n ≥ 2 we have n
2 + k ≥ k + 1, so we obtain that

(n− k)(n− 1) ≤ e(G) + e(Gc) +
n∑

i=n
2
+k+1

dci −
k∑

i=1

dci

=
n(n− 1)

2
+

n∑
i=n

2
+k+1

dci −
k∑

i=1

dci .

Subcase 1.1:
k∑

i=1

dci = 0.

In this case dc1 = · · · = dck = 0, and this implies that dcn ≤ (n− 1− k). So we have

(n− k)(n− 1) ≤ n(n− 1)

2
+

n∑
i=n

2
+k+1

dci

≤ n(n− 1)

2
+
(n
2
− k

)
(n− 1− k),

and we conclude that k
(
n
2 − k

)
≤ 0, a contradiction due to 1 ≤ k ≤

⌊
n
2

⌋
− 1.

Subcase 1.2:
k∑

i=1

dci ≥ 1.

Using that dck ≤ n− 1 we have

(n− k)(n− 1) ≤ n(n− 1)

2
+

n∑
i=n

2
+k+1

dci −
k∑

i=1

dci

≤ n(n− 1)

2
+
(n
2
− k

)
(n− 1)−

k∑
i=1

dci ,

and we conclude that
∑k

i=1 d
c
i ≤ 0, a contradiction.

Case 2: n is odd.
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Subcase 2.1: k = 1 or k =
⌊
n
2

⌋
.

In this subcase we find the remaining extremal graphs.
For k = 1 the Lemma 6 states that G is isomorphic to Sdn+1 ∪ (n − dn − 1)K1, this

ensures that Gc has one vertex with degree n − dn − 1, dn vertices with degree n − 2,
n− dn − 1 vertices with degree n− 1 and n(n−1)

2 − dn edges.
Using that a(Gc) =

⌊
n
2

⌋
+ 1, we have

(n−dn−1)+dn(n−2)+
[⌊n

2

⌋
+ 1− (dn + 1)

]
(n−1) =

⌊n
2 ⌋+1∑
i=1

dci ≤ e(Gc) =
n(n− 1)

2
−dn,

this provides
⌊
n
2

⌋
≤ dn ≤ n− 1. Therefore, we conclude that G is isomorphic to Sdn+1 ∪

(n− dn − 1)K1, for
⌊
n
2

⌋
≤ dn ≤ n− 1.

For k =
⌊
n
2

⌋
we have a(Gc) = n−1 and we proceed in an analogous way to the previous

case, with Gc in the role of G.
Subcase 2.2: 2 ≤ k ≤

⌊
n
2

⌋
− 1.

In this subcase we prove that there are no more extremal graphs.
Suppose without loss of generality that G is connected and a(G) = n− k.
Using the relation between the sequences of the degrees of G and Gc given in (1) we

obtain

⌊n
2 ⌋+k∑
i=1

dci =
(⌊n

2

⌋
+ k

)
(n− 1)−

n∑
i=⌊n

2 ⌋−k+2

di

=
(⌊n

2

⌋
+ k

)
(n− 1)−

n∑
i=n−k+1

di −
n−k∑

i=⌊n
2 ⌋−k+2

di

=
(⌊n

2

⌋
+ k

)
(n− 1)−

n∑
i=n−k+1

di −
n−k∑
i=1

di +

⌊n
2 ⌋−k+1∑
i=1

di.

Using that a(G) = n− k and the definition of annihilation number

⌊n
2 ⌋+k∑
i=1

dci ≥
(⌊n

2

⌋
+ k

)
(n− 1)− e(G)−

n∑
i=n−k+1

di +

⌊n
2 ⌋−k+1∑
i=1

di

=
[
n
⌊n
2

⌋
− e(G)

]
−
⌊n
2

⌋
+ k(n− 1)−

n∑
i=n−k+1

di +

⌊n
2 ⌋−k+1∑
i=1

di

Finally, simplifying the inequality above we obtain

⌊n
2 ⌋+k∑
i=1

dci ≥ e(Gc) +

[
k(n− 1)−

n∑
i=n−k+1

di

]
−
⌊n
2

⌋
+

⌊n
2 ⌋−k+1∑
i=1

di. (2)

In the subcases that follow we study the values of k(n− 1)−
n∑

i=n−k+1

di.
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Subcase 2.2.1: k(n− 1)−
n∑

i=n−k+1

di > k − 1.

Since G is connected we have

⌊n
2 ⌋−k+1∑
i=1

di ≥
⌊n
2

⌋
− k + 1.

Applying in the inequality (2) we get

⌊n
2 ⌋+k∑
i=1

dci > e(Gc) + (k − 1)−
⌊n
2

⌋
+
(⌊n

2

⌋
− k + 1

)
= e(Gc).

This ensures that a(Gc) <
⌊
n
2

⌋
+ k and the result follows.

Subcase 2.2.2: k(n− 1)−
n∑

i=n−k+1

di = 0.

In this case we have dn = · · · = dn−k+1 = n− 1 and, consequently, d1 ≥ k. This implies
that

⌊n
2 ⌋−k+1∑
i=1

di ≥ k
(⌊n

2

⌋
− k + 1

)
.

Applying in the inequality (2) we get

⌊n
2 ⌋+k∑
i=1

dci ≥ e(Gc) + 0−
⌊n
2

⌋
+ k

(⌊n
2

⌋
− k + 1

)
≥ e(Gc) +

⌊n
2

⌋
− 2.

For n ≥ 7 the previous inequality ensures that a(Gc) <
⌊
n
2

⌋
+ k. The remaining cases

(n ≤ 5) are easily checked.

Subcase 2.2.3: 1 ≤ k(n− 1)−
n∑

i=n−k+1

di ≤ k − 1.

To simplify the notation, we denote x = k(n− 1)−
n∑

i=n−k+1

di.

Lemma 7 states that dn = · · · = dn−k+x+1 = n − 1 and dn−k+x ≥ n − 2, consequently,
we have that d1 ≥ k − x and d2 ≥ k − x+ 1. Applying this in the inequality (2) we get

⌊n
2 ⌋+k∑
i=1

dci ≥ e(Gc) + x−
⌊n
2

⌋
+ (k − x) +

(⌊n
2

⌋
− k

)
(k − x+ 1)

= e(Gc) +
(⌊n

2

⌋
− k

)
(k − x)

≥ e(Gc) + 1 > e(Gc).

This ensures that a(Gc) <
⌊
n
2

⌋
+ k and the result follows.

Thus, we conclude that there are no graphs with a(G) = n − k and a(Gc) =
⌊
n
2

⌋
+ k,

for 2 ≤ k ≤
⌊
n
2

⌋
− 1, that satisfy the upper bound presented. This concludes the proof.�
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Similar to the annihilation number, we can show that for each integer in the interval
defined in Theorem 2 there is at least one graph G for which a(G) + a(Gc) assumes this
value.

Corollary 8. Let n and k be integers such that

2
⌊n
2

⌋
+ 1 ≤ k ≤ n+

⌊n
2

⌋
− 1.

If G is isomorphic to
(
n+

⌊
n
2

⌋
− k

)
K2 ∪

(
2k − 2

⌊
n
2

⌋
− n

)
K1, then a(G) + a(Gc) = k.

Proof. Suppose that G =
(
n+

⌊
n
2

⌋
− k

)
K2 ∪

(
2k − 2

⌊
n
2

⌋
− n

)
K1. Note that G has the

following properties:
• 2n+ 2

⌊
n
2

⌋
− 2k vertices of degree 1;

• 2k − 2
⌊
n
2

⌋
− n vertices of degree 0;

• n+
⌊
n
2

⌋
− k edges.

Adding the k −
⌊
n
2

⌋
smallest degrees of G we have

k−⌊n
2 ⌋∑

i=1

di =

2k−2⌊n
2 ⌋−n∑

i=1

di +

k−⌊n
2 ⌋∑

i=2k−2⌊n
2 ⌋−n+1

di = 0 +
(
n+

⌊n
2

⌋
− k

)
= e(G).

This implies that the annihilation number of G is k −
⌊
n
2

⌋
.

Using the definition of complement graph and the relation between the sequences of the
degrees of G and Gc given in (1), we have that Gc has the following properties:
• 2k − 2

⌊
n
2

⌋
− n vertices of degree n− 1;

• 2n+ 2
⌊
n
2

⌋
− 2k vertices of degree n− 2;

• n(n−1)
2 − n−

⌊
n
2

⌋
+ k edges.

Adding the
⌊
n
2

⌋
smallest degrees of Gc we have

⌊n
2 ⌋∑

i=1

dci =
⌊n
2

⌋
(n− 2) ≤ n(n− 1)

2
− n−

⌊n
2

⌋
+ k = e(Gc).

This implies that the annihilation number of Gc is
⌊
n
2

⌋
.

Consequently, we conclude that a(G) + a(Gc) = k. �

To conclude, we emphasize the expressions for the lower and upper bounds are simple
and elegant, but it seems to be hard to characterize the graphs satisfying the extremal
values. In particular, we observed that the lower bound is satisfied by a large number of
graphs and to carry out its characterization is possible future work that will be useful in
understanding the extreme behavior of the annihilation number.
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